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INTRODUCTION
The Office of Naval Research (ONR) established the Deployable
Autonomous Distributed System (DADS) program (Figure 1) to demon-
strate the feasibility of increased performance for an advanced tactical/
surveillance system that operates as a field of underwater distributed sensor
nodes. The goal of DADS is to demonstrate the feasibility of a cooperative
field-level detection and data fusion system that increases performance at
a reduced cost. Given limited power, the objectives are to use distributed
detection and data fusion to increase the lifetime of the field (reduced
power consumption), decrease the false alarm rate of the field over that
of the individual nodes, increase the field-level detection, increase the
probability of correct classification, and increase the accuracy of target
position estimates [1, 2, and 3].

A DADS field consists of individual sensor nodes operating autonomously.
Each sensor node uses a set of acoustic and electromagnetic sensors to
provide coverage of a small area of interest. Each DADS sensor node uses
a matched-field tracking algorithm to provide target detections consisting
of position, velocity, and classification information. Once a detection is
constructed at a sensor node, the data are transferred to a DADS master
node where field-level data fusion is performed.

Detection Theory
In the DADS program, a need exists to identify what constitutes target
detections from the field of autonomous sensor nodes. The DADS pro-
gram also requires an optimization algorithm to route communication
messages efficiently, using as little power as possible. A field-level
control/detection scheme is sought to detect targets of interest at a given
field-level probability and to route messages optimally by using a mini-
mal amount of power. Control of an autonomous set of sensor nodes is
needed to meet a desired probability of detection for the field and to
extend the life of the field.

To construct a field-level detection, we now define what is required to
call out a field-level detection. Each sensor node contains an acoustic sen-
sor suite and an electromagnetic sensor suite. To report a detection, both
the acoustic and magnetic sensors must detect a target at a sensor node.
Once one node has detected the target, a second node nearby is cued and
another sensor node must detect the target. Once this second sensor node
detects and reports the target, a field-level detection is called and reported
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FIGURE 1.  Field of DADS autonomous
sensor nodes.
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out by the master node for field-level fusion. Each sensor node has a
threshold for the sensor suite given by an operating point on a receiver
operating characteristic (ROC) curve as shown in Figure 2. The operating
points on the figure are labeled R1 and R2 and represent different signal-
to-noise ratio (SNR) levels for the sensor suite. Choosing different oper-
ating points on the ROC curve yields different probabilities of detection
and probabilities of false alarm. A constant field-level probability of
detection is desired for operation of the field of sensor nodes. By adjust-
ing threshold levels at the sensor suite, that is, moving up and down
operating points on the ROC curve at each sensor node, a constant field-
level probability can be achieved.

Besides controlling the thresholds at the individual sensor suites at each
node, another problem is to minimize the power consumption of the
individual sensor nodes while meeting the field-level probability con-
straint. This issue addresses the routing of communication messages
through the distributed field of sensor nodes. As messages are passed
from sensor node to sensor node and finally arrive at the master node, the
battery level is drained by the amount of communication power spent
transmitting and relaying detections acoustically.

A field-level controller will adjust the detection threshold levels at each
sensor node to meet the desired field-level probability of detection and to
perform optimal routing of messages through the field. A typical example
of a point on a ROC curve is shown in Figure 3.

A brief overview of detection theory is provided below [4]. In Figure 3,
two possible hypotheses, labeled H0 and H1, are shown. H0 is the false
alarm hypothesis and H1 is the detection hypothesis. The threshold T is
used to determine whether or not the SNR is high enough to call out a
detection. The SNR in the figure is labeled γ. Under the two Gaussian
curves, a probability of detection and a probability of false alarm can be
determined. Integrating the H0 probability density function (pdf) from T
to ∞, the false alarm probability is calculated. Integrating the H1 pdf
from T to ∞, the probability of detection is calculated. Figure 4 shows
several SNRs from a chosen ROC curve operating point. The objective
of the field-level controller is to adapt the sensor node thresholds to
acquire a target of interest and detect it successfully through the field. In
the figure, the graph labeled nominal is shown to demonstrate a chosen
operating point for the sensor node. The next two graphs show a
decrease in SNR and an increase in SNR, respectively. As SNR levels
vary, a target may become easier or more difficult to detect although the
probability of false alarm remains constant across all three graphs. Only
the probability of detection decreases or increases due to the SNR of the
target. Our task is to adjust thresholds dynamically to make sure the tar-
get is acquired and tracked as it passes through the field. To do this, we
will lower thresholds for subsequent cued detections to increase the
detection range at a sensor node, but at the same time we increase the
number of false alarms from a sensor node. When adjusting these thresh-
olds at each sensor node, we must maintain a constant field-level proba-
bility of detection. A simple example of this threshold adjustment is to
use a bathtub analogy. If one side of the bathtub water is pushed down,
water on the other side of the tub will rise. This example shows what we
will do when adapting thresholds: we will lower a certain set of sensor
node thresholds while raising another set.
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FIGURE 2.  Typical ROC curve.
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Threshold Adaptation
Figure 5 shows a cookie cutter example of a field of sensor nodes. Each
sensor node has a defined detection range given in red (small circles) for a
high threshold (low false alarm rate, high SNR) and another detection
range shown in blue (large circles) for a low threshold (high false alarm
rate, low SNR). This figure demonstrates the adaptive process that must
occur for the DADS field of sensor nodes to detect
and continue to detect a target as it passes through the
field. 

If the field were static, the small red circles would dic-
tate the area of coverage in which the field could pick
up detectable targets. In the figure, a hypothetical tar-
get has been drawn by a black line with an arrow at
the tip. If the threshold were held at this higher level,
only one possible detection might occur as this target
traversed the field of sensor nodes. By lowering the
thresholds (larger blue circles), which is done by cue-
ing the field, a broader coverage of the field is
achieved. The figure shows that up to four possible
detections on a target of interest can occur by lower-
ing the sensor node thresholds. This improved
detectability concept will improve the overall field-
level data fusion by providing more contact informa-
tion than previously capable with a static set of sensor node thresholds.
By lowering the threshold though, a larger number of false alarms can
occur and cause power to be drained from the sensor nodes. False alarms
also make the data fusion problem at the master node more susceptible to
miscorrelation. Therefore, dropping all of the sensor node thresholds is
not acceptable because it will limit the system operation. As explained
previously, we will lower thresholds and raise thresholds at individual
sensor nodes to maintain the desired field-level probability of detection
while maximizing the life of the field.

2-of-2 Field Detector
To adjust thresholds, we propose to use a baseline model of a 2-of-2
detector. The detector will use communication costs, probabilities of
detection and false alarm, node spacing of the field, and signal processing
parameters used at the sensor node sensor suite. This formulation shows
that false alarms as well as target detections drain the power at each sen-
sor node. We will now present our baseline model equation for field-level
control as derived in [5]. This formulation will allow the complete field
to be controlled by the master node in the DADS system. The baseline
model equation is as follows. The estimated power P̂(n) consumed over a
period of time T at each node n, n = 1,..., N, is given by

FIGURE 5.  Sensor node threshold adjustments via field-level control.

P̂(n)(T) = ∑
k=1

ρsT

Con + [1– (1 – F1(n)F2(n))Np]Ck
(n)

+ ∑
n��Rk

(n)
[1– (1 – F1(n�)F2(n�))Np]Ck

(n)

+ ∑
n��Bk

(n)
[1– (1 – F1(n�)F2(n�))Np][1– (1 – F1(n)F2(n))ρsδNpP[1+sD2]/ (π(r

d
(2))2)]Ck

(n)

+ ∑
n��Rk

(n)
∑

n��Bk
(n)

[1– (1 – F1(n�)F2(n�))Np][1– (1 – F1(n�)F2(n�))ρsδNpP[1+sD2]/(π(r
d

(2))2)]Ck
(n) (1)



DATA ACQUISITION AND EXPLOITATION50

where ρs is the basic sample rate and T is the time period of the estimated
life of the node. The first term represents the power consumed Con from
the processor in the node. If the sensor node is on, a certain amount of
processing power is drained from the battery. The second term represents
the case that an initial false alarm is generated at node n, where  F1(n),
F2(n) are the probabilities of false alarm that are controlled by thresholds
T1(n) and T2(n), and Ck(n) is the communication power used to transmit
from node n to the next upstream node specified by the current commu-
nication route Rk(n) at time k.  Np is the size of the parameter space over
which the detectors must test, e.g., if the detector must look over a dis-
crete set of speed (say Ns) and closest point of approach (CPA), say
NCPA , thus giving Np = Ns NCPA. This is the second detection required
for declaring a field-level detection from the field. The third term repre-
sents the case of a "downstream" node n� that generates a false alarm and
node n is simply a passthrough; the communication route for node n at
time k is specified by Rk(n). The fourth term represents the case that a
false alarm is generated at node n as the result of being cued by another
node n� in a set of neighboring nodes Bk(n). Specifically, P is the covari-
ance of the track estimate at the time of the detection at the first node;
[1+sD2] is the expansion factor for the track covariance until the second
detection at the next node detection; π(rd

(2))2 is the area of the detection
space for the second sensor node; and D is the length of the sensor field.
The fifth term represents the case of a downstream node n� that generates
a false alarm as a result of being cued, and node n is simply a pass-
through. The last four terms deal with the cases of a target present;  ρT is
the target rate. The sixth term represents a target detection at node n,
where P1(n) , P2(n) are the probabilities of detection, again controlled by
the thresholds T1(n) and T2(n). This is a true target detection and not a
false alarm. The seventh term represents the case of a downstream node
n� detection where node n is simply a passthrough for the initial condi-
tion. The eighth term represents the case that a target detection is gener-
ated at node n as the result of being cued by another node n�. The final
term represents a downstream node n� that generates a target detection as
the result of being cued, and node n is simply a passthrough.

Given the current power P(n) available at each node, the estimated
remaining power is

ε(n)(T) = P(n) – P̂(n)(T) .

The objective function for maximizing the life of the field is

maximize T,
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subject to the constraints that each of the estimates of the remaining
power is positive

ε(n)(T) ≥ 0 , n = 1,..., N

and the field-level probability of detection is specified by

PD = N(ε1, ε2,..., εN)π(rd
2)[1– (1 – P1(1)P2(1))(1 – F1(1)F2(1))Np–1]

�[1– (1 – P1(2)P2(2))(1 – F1(2)F2(2))[ρδNpP(1+sD2)/ �πr
d

2 �]–1]/A(D) 

where N(ε1, ε2,..., εN) is the number of nodes with nonzero power
remaining and π(rd

2)/A(D) is the area covered by an individual node. The
objective is to maximize field life T subject to meeting the field-level con-
straint by adjusting probability of detection /probability of false alarm
threshold levels and varying communication routes (through Rk(n)). By
choosing appropriate thresholds at each sensor suite, the field-level prob-
ability of detection constraint can be met and the field life extended. An
algorithm that will choose thresholds to meet the probability of detection
constraint and extend the field life is discussed in the next section.

Evolutionary Programming
Evolutionary programming (EP) is a stochastic optimization technique
applied in this paper to optimize routing of the sensor node message traf-
fic at minimal power cost and to meet a field-level probability constraint.
EP falls under the domain of Evolutionary Computation that contains
other algorithmic techniques such as genetic algorithms (GAs), genetic
programming, as well as others [6]. One of the main differences between
EP and GAs is that EP performs a mutation operation while GAs per-
form a mutation operation and a crossover operation. Genetic algorithms
also operate from the bottom up when finding a solution. EP is a top
down approach to finding optimal solutions. An evolutionary algorithm
is shown in Figure 6. In simple terms, an evolutionary algorithm starts
out with a population of possible solutions to a problem. A population
consists of parent solutions and their corresponding offspring solutions.
This stochastic optimization technique allows the whole parameter space
to be searched and evaluated for a best-fitting solution. In the figure, the
initial solutions are called parents. Each parent solution can be a good
first guess at the correct answer or a randomly chosen solution that may
be very poor. Each parent has the ability to create a set of offspring solu-
tions by mutation or by crossover if a genetic approach was used. Each
parent solution is mutated by changing its state to form an offspring
solution. This mutation can be Gaussian or some other linear or nonlin-
ear deviation. Once the population of parents has been mutated and the
offspring solutions are created, the population consisting of parents and
offspring solutions is then scored, as shown in the figure. Scoring or eval-
uation of the population for our purpose is done to make sure the sensor
nodes meet a defined field-level probability constraint with their defined
threshold settings. A selection process is then performed whereby the
next generation of parents are selected to evolve better and better solu-
tions. This selection process chooses the solutions that passed the con-
straint in the scoring process by selecting the solutions that yield the
largest amount of field life. 

The standard EP approach consists of several steps (initialization, muta-
tion, scoring, and selection) [6]. Initialization is performed by assigning
thresholds to each sensor in the sensor suite (magnetic, acoustic) and
using these thresholds, the sonar equation, and an error function to evaluate
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FIGURE 6.  Evolutionary algorithm.
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the probability of detection and probability of false alarm of the sensor
node. This is done for each sensor node in the field given by

Pd(n) = 1/2*(1.0 – erf(T(n) – SL(n) + NL(n)))                         (2)

and
Pd(n) = 1/2*(1.0 – erf(T(n) + NL(n)))                                      (3)

where Eq. (2) initializes the probability of detection Pd for sensor node n
given its threshold T, the target source level SL, and the noise level at the
sensor NL. Eq. (3) initializes the probability of false alarm Pfa for sensor
node n given its threshold T, and the noise level at the sensor NL. This is
performed for each sensor node until all thresholds and probabilities of
detection and false alarm have been initialized. This fully initialized field
of sensor nodes is deemed as a parent solution in the EP language and is a
possible solution for the field-life problem. Possible solutions are defined
as parents and are given as

P(k) = S(Pd(n), Pfa(n), T(n), R(n))                                           (4)

where P(k) are the k number of parents in the population solutions. Each
solution S is made up of a field of sensor nodes with independent thresh-
olds T, which dictate a Pd and Pfa for the sensor node, and a routing
table R for communication with other nodes in the field. Once the popu-
lation of parent solutions has been initialized, the EP algorithm is able to
perform the next three steps (mutation, scoring, and selection) iteratively
to converge to the best possible solution given time constraints and mem-
ory requirements of the system. The first step is the mutation process
whereby parent solutions generate offspring solutions. Offspring solu-
tions have the possibility of generating a better solution than their par-
ents. This is the evolutionary step in the EP process. One of the mutation
steps is to change the threshold at each sensor at a sensor node to yield a
better solution. This is defined by

O[T(m,n)] = P[T(k,n)] + N(0,1)                                             (5)

where O[T(m,n)] is the mutated threshold at offspring m for sensor node
n, P[T(k,n)] is the threshold at parent k for sensor node n, and N(0,1) is a
Gaussian random variable with zero mean and unit variance. Eq. (5)
changes each parent's threshold to generate an offspring's threshold.
Another mutation step is to change the routing table for communications
at each node. This is defined by

O[R(m,n)] = P[R(k,n)] �Urv*c (6)

where O[R(m,n)] is the mutated communication routes at offspring m for
sensor node n, P[R(k,n)] is the communication routes at parent k for sen-
sor node n, Urv is a Uniform random variable, and c is the number of
possible nodes for sensor node n to communicate with. The number of
communication routes can increase or decrease according to Eq. (6). Eq.
(6) changes each parent's communication route to generate an offspring's
communication route. Each parent can perform these mutation steps and
generate as many offspring as desired. Once this is done, the new popula-
tion of parents and offspring are scored and evaluated against the system
constraints. For example, if the desired field-level probability of detection
is 0.8, each solution is evaluated using 

PD = Nε1, ε2,..., εN)π(rd
2[1– (1 – P1(1)P2(1))(1 – F1(1)F2(1))Np–1]

�[1– (1 – P1(2)P2(2))(1 – F1(2)F2(2))[ρδNpP(1+sD2)/ �πr
d

2 �]–1]/A(D)   (7)



which is the probability of detection for a field of sensor nodes defined
above. (See 2-of-2 Field Detector.) We will use a simulated annealing
approach to meet this constraint. For example, if 0.8 is desired, we may
allow solutions to lie between (0.7, 0.9) in the beginning and slowly con-
verge toward 0.8 while we iterate. All solutions that pass this field-level
probability constraint are then passed to the selection process. Selection
is done by picking the best k solutions that meet the constraint and mini-
mize the power consumption defined from the baseline model from Eq.
(1). These best k solutions then become the parents for the next iteration.
The process continues until the best solution is found. This evolutionary
process extends the field life by optimizing the thresholds of the field and
planning the optimal routes for message passing.

RESULTS
Now we present some results of our EP solution to the adaptive thresh-
old control problem. These results are for a complete field of sensor
nodes. Each node has a set of thresholds solved for by the EP algorithm
as well as the optimal routes for communication to extend field life.

Simulation Overview
As stated previously, the claim of this paper is that it can be shown that
field life can be doubled by using a field-level controller to dynamically
adjust thresholds and routing structures, as compared to a fixed field that
uses static thresholds and routing structures.

The EP software written for this paper generates solutions that are repre-
sentative of a field under the control of a field-level controller. To make
the comparison to a fixed field, a fixed-field implementation had to be
generated.

The Fixed Field
The fixed field required a nominal routing structure and a set of sensor
thresholds, which would meet the field-level probability of detection. To
generate the nominal routing structures, a field initialization scheme was
emulated. The emulation of this field initialization scheme consists of the
following steps:

1. The Master Node broadcasts a Wakeup Message.

2. Any node that can hear responds with a Wakeup Response mes-
sage. In this case, any node within the cookie cutter range can hear.

3. Nodes that responded to the Master Node will be direct communi-
cation routes. This means that these nodes will relay their packets 
directly to the master node.

4. Nodes that heard the Master Node will broadcast to their neighbors.

5. Any node that can hear within the cookie cutter range will 
respond.

6. If the node that responds does not have a destination node yet, 
the node that broadcast will become the destination node.

7. This sequence is repeated until every node in the field has been 
assigned exactly one destination node.

The above sequence generated a nominal routing structure for a fixed
field as shown in Figure 7. In conjunction with the routing structures,
sensor thresholds that met the field-level probability of detection were
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required. To obtain these thresh-
olds, the EP model was run, and 
the thresholds from the optimal
solution were used.

The Controlled Field
In the simulations, two types of
results are generated for the con-
trolled field. The first type is
referred to as a "single optimized"
solution. This solution is generat-
ed using the EP software. Once
the EP algorithm finds an optimal
combination of thresholds and
routing structures, it uses that
solution for the life of the field.
Figure 8 shows the optimal routes
found for the single optimized
solution. 

The second type of a controlled
field solution is referred to as a
"vector-optimized" solution. As
with the single optimized solution,
the EP algorithm finds a solution
set, which maximizes field life.
However, in this solution, the
routes and thresholds can be
adjusted every 24 hours, thus
resulting in a vector of solutions.
Because the control algorithm is
run each day and the routes are
potentially changed, it is not possible to show each daily graphical solu-
tion in this paper.

Field Laydown
Simulations were run for two field laydowns. In each laydown, the field
consists of 30 sensor nodes and 1 master node arranged in a (56 by 28)
unit grid. The difference between the two laydowns is the placement of
the master node. In the first field laydown, the master node is a square
box on the edge of the field as shown in Figures 7 and 8. In the second
laydown, the master node is in the center of the field of sensor nodes.

Detector Types
The objective function defined previously (see 2-of-2 Field Detector) is
for a 2-of-2 detector. This paper also defined an objective function for a
1-2 detector. The 1-2 detector requires an initial detection from the mag-
netic sensor on one node followed by a confirmed detection from the
acoustic sensor on a second node. Results for both the 2-of-2 detector
and the 1-2 detector are reported below.

Simulation Results
The results from the simulation are given in Table 1. The results are pro-
vided in units of days.

MASTER
NODE

28 units

56 units

FIGURE 8.  Single optimized field routes.
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MASTER
NODE

28 units

56 units

FIGURE 7.  Fixed-field routes.



Figure 9 shows the results from
running the fixed-field simula-
tion. In the fixed field, the rout-
ing assignment was performed
by using the minimum number
of hops between the master node
and each node in the field. This
result is for the 2-of-2 detector
processing for the second field
laydown. It shows that running
no optimization algorithm and
just a greedy algorithm to assign a route for the field
only yields a field life of 74 days. As shown in Figure
9, one single node begins to lose its power immediately.
This node is the main communication node to the mas-
ter node. Once one node in the field loses all of its
power, the field is considered to be dead.

Figure 10 shows the results from the single optimized
field simulation. The routes for this result were calcu-
lated by running the EP algorithm once for the whole
life of the field. This optimization result yielded a field
life of 106 days for the 2-of-2 detector for the second
field laydown. As shown in this figure, a single node
still drives the field to death, but there are several other
sensor nodes that are also losing power at a similar
rate. 

The field life was extended over the fixed-field imple-
mentation by using at least one planned optimal route
for the whole simulation.

Figure 11 shows the results from the vector-optimized
field simulation. This result has its routes recalculated
each day by running the EP optimization algorithm.
This optimization result yielded a field life of 154 days
for the 2-of-2 detector for the second field laydown.
As shown in this figure, a group of sensor nodes all
lose power similarly at the same rate. Approximately
one-third of the sensor nodes in the field died on day
154. This result more than doubled the life of the field
over the fixed-field result of Figure 9. It also increased
the life of the field from 106 days for the single opti-
mized solution shown in Figure 10 to 154 days for the
vector-optimized solution.

Observations
The following observations are made regarding the
simulation results:

1. The vector-optimized solution more than doubled 
field life as compared to the fixed-field solution.

2. The 2-of-2 detector has a longer life than the 1-2 
detector. This is because the 2-of-2 detector has 
stringent initial detection rules, which translates to 
fewer reports and less communication as shown in 
Table 1.

TABLE 1.  Simulation results in days.
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FIGURE 9.  Fixed-field life.
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FIGURE 11.  Vector-optimized field life.
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3. Field life increased when the master node was moved from the edge 
of the field to the center of the field for the second field laydown. 
This is because when the master node is in the center of the field, 
there are more direct routes to the master node, which spreads out 
battery drain.

4. The vector-optimized solution has a longer field life than the single 
optimized solution. This is because changing the routes every 24 
hours allows the battery drain to be spread more evenly across the 
field. With the vector-optimized solution, approximately one-third of
the field will die on the same day. 

CONCLUSIONS
In this paper, we have applied a stochastic optimization technique to
adapt the thresholds of an autonomous sensor field and plan the commu-
nication routes. This stochastic optimization algorithm is known as evo-
lutionary programming. The evolutionary program adapted the thresholds
of a 2-of-2 detector for a set of sensors as well as a 1-2 detector. The
algorithm is an evolutionary computation technique where an analytic
solution is not attainable mathematically. Each sensor node in the 2-of-2
detector contained two thresholds to adapt, yielding four total thresholds
to compute. The four thresholds are combined to meet a field-level prob-
ability of detection constraint and extend the life of a field of sensor nodes.
Results show the benefits of adaptive threshold control in an autonomous
sensor field by reducing communication costs and extending the life of
the field by two.
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